The Mathematics of Machine Learning
indgår i De Gruyter Textbook serien
- Indbinding:
- Paperback
- Sideantal:
- 260
- Udgivet:
- 1. juli 2024
- Størrelse:
- 170x0x240 mm.
- 8-11 hverdage.
- 16. januar 2025
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af The Mathematics of Machine Learning
This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.
There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.
This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.
There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.
This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.
Brugerbedømmelser af The Mathematics of Machine Learning
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen The Mathematics of Machine Learning findes i følgende kategorier:
- Business og læring > Computer og IT
- Business og læring > Videnskab
- Historie og samfund
- Skønlitteratur > Romaner
- Skønlitteratur og relaterede emner > Humoristiske romaner
- Økonomi, finans, erhvervsliv og ledelse
- Lægevidenskab og sygepleje
- Historie og arkæologi
- Matematik og naturvidenskab > Matematik > Anvendt matematik
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens > Machine learning
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens > Neurale net og fuzzy systemer
© 2024 Pling BØGER Registered company number: DK43351621