Perspectives of Neural-Symbolic Integration
- Indbinding:
- Paperback
- Sideantal:
- 336
- Udgivet:
- 25. november 2010
- Størrelse:
- 155x19x235 mm.
- Vægt:
- 511 g.
- 8-11 hverdage.
- 28. januar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Perspectives of Neural-Symbolic Integration
The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci?c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti?cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di?erent paradigms in ar- ?cial intelligence which both have their strengths and weaknesses: Statistical methods o?er ?exible and highly e?ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, ?nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire?ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other.
Brugerbedømmelser af Perspectives of Neural-Symbolic Integration
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Perspectives of Neural-Symbolic Integration findes i følgende kategorier:
© 2025 Pling BØGER Registered company number: DK43351621