De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bøger af Saso Dzeroski

Filter
Filter
Sorter efterSorter Populære
  • af Saso Dzeroski
    586,95 kr.

    This book constitutes the thoroughly refereed joint postproceedings of the 5th International Workshop on Knowledge Discovery in Inductive Databases, KDID 2006, held in association with ECML/PKDD. Bringing together the fields of databases, machine learning, and data mining, the papers address various current topics in knowledge discovery and data mining in the framework of inductive databases such as constraint-based mining, database technology and inductive querying.

  • af Saso Dzeroski & Peter A. Flach
    586,95 - 591,95 kr.

  • af James Cussens
    595,95 kr.

    This volume has its origins in the ?rst Learning Language in Logic (LLL) wo- shop which took place on 30 June 1999 in Bled, Slovenia immediately after the Ninth International Workshop on Inductive Logic Programming (ILP'99) and the Sixteenth International Conference on Machine Learning (ICML'99). LLL is a research area lying at the intersection of computational linguistics, machine learning, and computational logic. As such it is of interest to all those working in these three ?elds. I am pleased to say that the workshop attracted subm- sions from both the natural language processing (NLP) community and the ILP community, re?ecting the essentially multi-disciplinary nature of LLL. Eric Brill and Ray Mooney were invited speakers at the workshop and their contributions to this volume re?ect the topics of their stimulating invited talks. After the workshop authors were given the opportunity to improve their papers, the results of which are contained here. However, this volume also includes a substantial amount of two sorts of additional material. Firstly, since our central aim is to introduce LLL work to the widest possible audience, two introductory chapters have been written. Dzeroski, ? Cussens and Manandhar provide an - troduction to ILP and LLL and Thompson provides an introduction to NLP.