Bøger af Johannes Kraus
-
1.418,95 kr. Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.
- Bog
- 1.418,95 kr.
-
1.747,95 kr. This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. The authors provide a systematic presentation of the recent advances in robust algebraic multilevel methods and algorithms, e.g., the preconditioned conjugate gradient method, algebraic multilevel iteration (AMLI) preconditioners, the classical algebraic multigrid (AMG) method and its recent modifications, namely AMG using element interpolation (AMGe) and AMG based on smoothed aggregation. The first six chapters can serve as a short introductory course on the theory of AMLI methods and algorithms. The next part of the monograph is devoted to more advanced topics, including the description of new generation AMG methods, AMLI methods for discontinuous Galerkin systems, looking-free algorithms for coupled problems etc., ending with important practical issues of implementation and challenging applications. This second part is addressed to some more experienced students and practitioners and can be used to complete a more advanced course on robust AMLI and AMG methods and their efficient application. This book is intended for mathematicians, engineers, natural scientists etc.
- Bog
- 1.747,95 kr.