Bøger af Hanghang Tong
-
577,95 kr. Networks naturally appear in many high-impact domains, ranging from social network analysis to disease dissemination studies to infrastructure system design. Within network studies, network connectivity plays an important role in a myriad of applications. The diversity of application areas has spurred numerous connectivity measures, each designed for some specific tasks. Depending on the complexity of connectivity measures, the computational cost of calculating the connectivity score can vary significantly. Moreover, the complexity of the connectivity would predominantly affect the hardness of connectivity optimization, which is a fundamental problem for network connectivity studies. This book presents a thorough study in network connectivity, including its concepts, computation, and optimization. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity computation aspect, the authors introduce the connectivity tracking problems and present several effective connectivity inference frameworks under different network settings. Taking the connectivity optimization perspective, the book analyzes the problem theoretically and introduces an approximation framework to effectively optimize the network connectivity. Lastly, the book discusses the new research frontiers and directions to explore for network connectivity studies. This book is an accessible introduction to the study of connectivity in complex networks. It is essential reading for advanced undergraduates, Ph.D. students, as well as researchers and practitioners who are interested in graph mining, data mining, and machine learning.
- Bog
- 577,95 kr.
-
548,95 kr. This SpringerBrief presents a typical life-cycle of mobile data mining applications, including:data capturing and processing which determines what data to collect, how to collect these data, and how to reduce the noise in the data based on smartphone sensors feature engineering which extracts and selects features to serve as the input of algorithms based on the collected and processed data model and algorithm designIn particular, this brief concentrates on the model and algorithm design aspect, and explains three challenging requirements of mobile data mining applications: energy-saving, personalization, and real-time Energy saving is a fundamental requirement of mobile applications, due to the limited battery capacity of smartphones. The authors explore the existing practices in the methodology level (e.g. by designing hierarchical models) for saving energy. Another fundamental requirement of mobile applications is personalization. Most of the existing methods tend to train generic models for all users, but the authors provide existing personalized treatments for mobile applications, as the behaviors may differ greatly from one user to another in many mobile applications. The third requirement is real-time. That is, the mobile application should return responses in a real-time manner, meanwhile balancing effectiveness and efficiency. This SpringerBrief targets data mining and machine learning researchers and practitioners working in these related fields. Advanced level students studying computer science and electrical engineering will also find this brief useful as a study guide.
- Bog
- 548,95 kr.