Bøger af Elena Deza
-
1.908,95 kr. Stirling numbers are one of the most known classes of special numbers in Mathematics, especially in Combinatorics and Algebra. They were introduced by Scottish mathematician James Stirling (1692-1770) in his most important work, Differential Method with a Tract on Summation and Interpolation of Infinite Series (1730). Stirling numbers have a rich history; many arithmetic, number-theoretical, analytical and combinatorial connections; numerous classical properties; as well as many modern applications.This book collects much of the scattered material on the two subclasses of Stirling numbers to provide a holistic overview of the topic. From the combinatorial point of view, Stirling numbers of the second kind, S(n, k), count the number of ways to partition a set of n different objects (i.e., a given n-set) into k non-empty subsets. Stirling numbers of the first kind, s(n, k), give the number of permutations of n elements with k disjoint cycles. Both subclasses of Stirling numbers play an important role in Algebra: they form the coefficients, connecting well-known sets of polynomials.This book is suitable for students and professionals, providing a broad perspective of the theory of this class of special numbers, and many generalisations and relatives of Stirling numbers, including Bell numbers and Lah numbers. Throughout the book, readers are provided exercises to test and cement their understanding.
- Bog
- 1.908,95 kr.
-
1.528,95 kr. This book contains a detailed presentation on the theory of two classes of special numbers, perfect numbers, and amicable numbers, as well as some of their generalizations. It also gives a large list of their properties, facts and theorems with full proofs. Perfect and amicable numbers, as well as most classes of special numbers, have many interesting properties, including numerous modern and classical applications as well as a long history connected with the names of famous mathematicians.The theory of perfect and amicable numbers is a part of pure Arithmetic, and in particular a part of Divisibility Theory and the Theory of Arithmetical Functions. Thus, for a perfect number n it holds ¿(n) = 2n, where ¿ is the sum-of-divisors function, while for a pair of amicable numbers (n, m) it holds ¿(n) = ¿(m) = n + m. This is also an important part of the history of prime numbers, since the main formulas that generate perfect numbers and amicable pairs are dependent on the good choice of one or several primes of special form.Nowadays, the theory of perfect and amicable numbers contains many interesting mathematical facts and theorems, alongside many important computer algorithms needed for searching for new large elements of these two famous classes of special numbers.This book contains a list of open problems and numerous questions related to generalizations of the classical case, which provides a broad perspective on the theory of these two classes of special numbers. Perfect and Amicable Numbers can be useful and interesting to both professional and general audiences.
- Bog
- 1.528,95 kr.
-
1.099,95 - 2.463,95 kr. - Bog
- 1.099,95 kr.
-
1.396,95 kr. Suitable for researchers using Mathematics as well as for mathematicians themselves, this book covers a range of subjects in pure and applied mathematics. It provides the distances, as well as distance-related notions and paradigms in ready-to-use fashion.
- Bog
- 1.396,95 kr.