De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bøger af Benson Farb

Filter
Filter
Sorter efterSorter Populære
  • af Benson Farb
    727,95 - 934,95 kr.

    About This Book This book is meant to be used by beginning graduate students. It covers basic material needed by any student of algebra, and is essential to those specializing in ring theory, homological algebra, representation theory and K-theory, among others. It will also be of interest to students of algebraic topology, functional analysis, differential geometry and number theory. Our approach is more homological than ring-theoretic, as this leads the to many important areas of mathematics. This ap- student more quickly proach is also, we believe, cleaner and easier to understand. However, the more classical, ring-theoretic approach, as well as modern extensions, are also presented via several exercises and sections in Chapter Five. We have tried not to leave any gaps on the paths to proving the main theorem- at most we ask the reader to fill in details for some of the sideline results; indeed this can be a fruitful way of solidifying one's understanding.

  • af Benson Farb & Dan Margalit
    1.095,95 kr.

    The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmuller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.