De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Complexity and Evolution of Dissipative Systems

Bag om Complexity and Evolution of Dissipative Systems

This book focuses on the dynamic complexity of neural, genetic networks, and reaction diffusion systems. The author shows that all robust attractors can be realized in dynamics of such systems. In particular, a positive solution of the Ruelle-Takens hypothesis for on chaos existence for large class of reaction-diffusion systems is given. The book considers viability problems for such systems - viability under extreme random perturbations - and discusses an interesting hypothesis of M. Gromov and A. Carbone on biological evolution. There appears a connection with the Kolmogorov complexity theory. As applications, transcription-factors-microRNA networks are considered, patterning in biology, a new approach to estimate the computational power of neural and genetic networks, social and economical networks, and a connection with the hard combinatorial problems.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783110266481
  • Indbinding:
  • Hardback
  • Sideantal:
  • 316
  • Udgivet:
  • 15. november 2013
  • Størrelse:
  • 175x28x246 mm.
  • Vægt:
  • 782 g.
  • 2-3 uger.
  • 10. december 2024
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Complexity and Evolution of Dissipative Systems

This book focuses on the dynamic complexity of neural, genetic networks, and reaction diffusion systems. The author shows that all robust attractors can be realized in dynamics of such systems. In particular, a positive solution of the Ruelle-Takens hypothesis for on chaos existence for large class of reaction-diffusion systems is given. The book considers viability problems for such systems - viability under extreme random perturbations - and discusses an interesting hypothesis of M. Gromov and A. Carbone on biological evolution. There appears a connection with the Kolmogorov complexity theory. As applications, transcription-factors-microRNA networks are considered, patterning in biology, a new approach to estimate the computational power of neural and genetic networks, social and economical networks, and a connection with the hard combinatorial problems.

Brugerbedømmelser af Complexity and Evolution of Dissipative Systems