De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bøger i Undergraduate Texts in Mathematics serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Charles Chapman Pugh
    736,95 kr.

    It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems.

  • - A Problem-Centered Approach to History and Foundations
    af Gabor Toth
    603,95 kr.

  • af John Stillwell
    574,95 kr.

    This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it is independent of the algebra book, and probably easier. In Elements oi Algebra we sought solution by radicals, and this led to the concepts of fields and groups and their fusion in the celebrated theory of Galois. In the present book we seek integer solutions, and this leads to the concepts of rings and ideals which merge in the equally celebrated theory of ideals due to Kummer and Dedekind. Solving equations in integers is the central problem of number theory, so this book is truly a number theory book, with most of the results found in standard number theory courses. However, numbers are best understood through their algebraic structure, and the necessary algebraic concepts- rings and ideals-have no better motivation than number theory. The first nontrivial examples of rings appear in the number theory of Euler and Gauss. The concept of ideal-today as routine in ring the- ory as the concept of normal subgroup is in group theory-also emerged from number theory, and in quite heroic fashion. Faced with failure of unique prime factorization in the arithmetic of certain generalized "e;inte- gers"e; , Kummer created in the 1840s a new kind of number to overcome the difficulty. He called them "e;ideal numbers"e; because he did not know exactly what they were, though he knew how they behaved.

  • af Laszlo Lovasz
    650,95 kr.

    Discrete mathematics is quickly becoming one of the most important areas of mathematical research, with applications to cryptography, linear programming, coding theory and the theory of computing. This book is aimed at undergraduate mathematics and computer science students interested in developing a feeling for what mathematics is all about, where mathematics can be helpful, and what kinds of questions mathematicians work on. The authors discuss a number of selected results and methods of discrete mathematics, mostly from the areas of combinatorics and graph theory, with a little number theory, probability, and combinatorial geometry. Wherever possible, the authors use proofs and problem solving to help students understand the solutions to problems. In addition, there are numerous examples, figures and exercises spread throughout the book.Lszl Lovsz is a Senior Researcher in the Theory Group at Microsoft Corporation. He is a recipient of the 1999 Wolf Prize and the Gdel Prize for the top paper in Computer Science. Jzsef Pelikn is Professor of Mathematics in the Department of Algebra and Number Theory at Etvs Lornd University, Hungary. In 2002, he was elected Chairman of the Advisory Board of the International Mathematical Olympiad. Katalin Vesztergombi is Senior Lecturer in the Department of Mathematics at the University of Washington.

  • af Gabor Toth
    700,95 - 739,95 kr.

    Previous edition sold 2000 copies in 3 years; Explores the subtle connections between Number Theory, Classical Geometry and Modern Algebra; Over 180 illustrations, as well as text and Maple files, are available via the web facilitate understanding: http://mathsgi01.rutgers.edu/cgi-bin/wrap/gtoth/; Contains an insert with 4-color illustrations; Includes numerous examples and worked-out problems

  • af Serge Lang
    683,95 kr.

    This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin- ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory.

  • af Yiannis Moschovakis
    926,95 kr.

    What this book is about. The theory of sets is a vibrant, exciting math- ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun- dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "e;making a notion precise"e; is essentially synonymous with "e;defining it in set theory. "e; Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "e;ab- stract sets,"e; including the Axiom of Choice, transfinite recursion, and car- dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "e;pointsets"e; which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.

  • af Art Knoebel
    582,95 kr.

    In introducing his essays on the study and understanding of nature and e- lution, biologist Stephen J. Gould writes: [W]e acquire a surprising source of rich and apparently limitless novelty from the primary documents of great thinkers throughout our history. But why should any nuggets, or even ?akes, be left for int- lectual miners in such terrain? Hasn't the Origin of Species been read untold millions of times? Hasn't every paragraph been subjected to overt scholarly scrutiny and exegesis? Letmeshareasecretrootedingeneralhumanfoibles. . . . Veryfew people, including authors willing to commit to paper, ever really read primary sources-certainly not in necessary depth and completion, and often not at all. . . . I can attest that all major documents of science remain cho- full of distinctive and illuminating novelty, if only people will study them-in full and in the original editions. Why would anyone not yearn to read these works; not hunger for the opportunity? [99, p. 6f] It is in the spirit of Gould's insights on an approach to science based on p- mary texts that we o?er the present book of annotated mathematical sources, from which our undergraduate students have been learning for more than a decade. Although teaching and learning with primary historical sources require a commitment of study, the investment yields the rewards of a deeper understanding of the subject, an appreciation of its details, and a glimpse into the direction research has taken. Our students read sequences of primary sources.

  • - A Concrete Introduction to Algebraic Curves
    af Robert Bix
    582,95 kr.

    Algebraic curves are the graphs of polynomial equations in two vari- 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge- braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe- matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.

  • - Integer-Point Enumeration in Polyhedra
    af Matthias Beck & Sinai Robins
    524,95 kr.

    This textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. Because there is no other book that puts together all of these ideas in one place, this text is truly a service to the mathematical community. We encounter here a friendly invitation to the field of "e;counting integer points in polytopes,"e; also known as Ehrhart theory, and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant, and the authors' engaging style encourages such participation. The many compelling pictures that accompany the proofs and examples add to the inviting style. This new edition will contain at least one new chapter, new exercises, many new references, corrections, important updates to the open problems, and some new, professionally done illustrationsFor teachers, this text is ideally suited as a capstone course for undergraduate students or as a compelling text in discrete mathematical topics for beginning graduate students. For scientists, this text can be utilized as a quick tooling device, especially for those who want a self-contained, easy-to-read introduction to these topics.

  • af Gerald Edgar
    576,95 kr.

    From reviews of the first edition:"e;In the world of mathematics, the 1980's might well be described as the "e;decade of the fractal"e;. Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology...the book also contains many good illustrations of fractals (including 16 color plates)."e;Mathematics Teaching"e;The book can be recommended to students who seriously want to know about the mathematical foundation of fractals, and to lecturers who want to illustrate a standard course in metric topology by interesting examples."e;Christoph Bandt, Mathematical Reviews"e;...not only intended to fit mathematics students who wish to learn fractal geometry from its beginning but also students in computer science who are interested in the subject. Especially, for the last students the author gives the required topics from metric topology and measure theory on an elementary level. The book is written in a very clear style and contains a lot of exercises which should be worked out."e;H.Haase, ZentralblattAbout the second edition: Changes throughout the text, taking into account developments in the subject matter since 1990; Major changes in chapter 6. Since 1990 it has become clear that there are two notions of dimension that play complementary roles, so the emphasis on Hausdorff dimension will be replaced by the two: Hausdorff dimension and packing dimension. 6.1 will remain, but a new section on packing dimension will follow it, then the old sections 6.2--6.4 will be re-written to show both types of dimension; Substantial change in chapter 7: new examples along with recent developments; Sections rewritten to be made clearer and more focused.

  • af Ernst Hairer
    788,95 kr.

    . . . that departed from the traditional dry-as-dust mathematics textbook. (M. Kline, from the Preface to the paperback edition of Kline 1972) Also for this reason, I have taken the trouble to make a great number of drawings. (Brieskom & Knorrer, Plane algebraic curves, p. ii) . . . I should like to bring up again for emphasis . . . points, in which my exposition differs especially from the customary presentation in the text- books: 1. Illustration of abstract considerations by means of figures. 2. Emphasis upon its relation to neighboring fields, such as calculus of dif- ferences and interpolation . . . 3. Emphasis upon historical growth. It seems to me extremely important that precisely the prospective teacher should take account of all of these. (F. Klein 1908, Eng\. ed. p. 236) Traditionally, a rigorous first course in Analysis progresses (more or less) in the following order: limits, sets, '* continuous '* derivatives '* integration. mappings functions On the other hand, the historical development of these subjects occurred in reverse order: Archimedes Cantor 1875 Cauchy 1821 Newton 1665 . ;::: Kepler 1615 Dedekind . ;::: Weierstrass . ;::: Leibniz 1675 Fermat 1638 In this book, with the four chapters Chapter I. Introduction to Analysis of the Infinite Chapter II. Differential and Integral Calculus Chapter III. Foundations of Classical Analysis Chapter IV. Calculus in Several Variables, we attempt to restore the historical order, and begin in Chapter I with Cardano, Descartes, Newton, and Euler's famous Introductio.

  • af Joseph Bak
    727,95 kr.

    Beginning with the ?rst edition of Complex Analysis, we have attempted to present the classical and beautiful theory of complex variables in the clearest and most intuitive form possible. The changes inthisedition, which include additions to ten of the nineteen chapters, are intended to provide the additional insights that can be obtainedby seeing a little more of the "e;bigpicture"e;.This includesadditional related results and occasional generalizations that place the results inaslightly broader context. The Fundamental Theorem of Algebra is enhanced by three related results. Section 1.3 offers a detailed look at the solution of the cubic equation and its role in the acceptance of complex numbers. While there is no formula for determining the rootsof a generalpolynomial,we added a section on Newton'sMethod,a numerical technique for approximating the zeroes of any polynomial. And the Gauss-Lucas Theorem provides an insight into the location of the zeroes of a polynomial and those of its derivative. Aseries of new results relate to the mapping properties of analytic functions. Arevised proof of Theorem 6.15 leads naturally to a discussion of the connection between critical points and saddle points in the complex plane. The proof of the SchwarzRe?ectionPrinciplehasbeenexpandedtoincludere?ectionacrossanalytic arcs, which plays a key role in a new section (14.3) on the mapping properties of analytic functions on closed domains. And our treatment of special mappings has been enhanced by the inclusion of Schwarz-Christoffel transformations.

  • - A Closer Look at Mathematics
    af Ulrich Daepp & Pamela Gorkin
    779,95 kr.

    This book, which is based on Polya's method of problem solving, aids students in their transition from calculus (or precalculus) to higher-level mathematics. The book begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends with suggested projects for independent study. Students will follow Polya's four step approach: analyzing the problem, devising a plan to solve the problem, carrying out that plan, and then determining the implication of the result. In addition to the Polya approach to proofs, this book places special emphasis on reading proofs carefully and writing them well. The authors have included a wide variety of problems, examples, illustrations and exercises, some with hints and solutions, designed specifically to improve the student's ability to read and write proofs. Historical connections are made throughout the text, and students are encouraged to use the rather extensive bibliography to begin making connections of their own. While standard texts in this area prepare students for future courses in algebra, this book also includes chapters on sequences, convergence, and metric spaces for those wanting to bridge the gap between the standard course in calculus and one in analysis.

  • af David M. Bressoud
    780,95 kr.

    Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.

  • af Alan F. Beardon
    569,95 - 821,95 kr.

    Broadly speaking, analysis is the study of limiting processes such as sum- ming infinite series and differentiating and integrating functions, and in any of these processes there are two issues to consider; first, there is the question of whether or not the limit exists, and second, assuming that it does, there is the problem of finding its numerical value. By convention, analysis is the study oflimiting processes in which the issue of existence is raised and tackled in a forthright manner. In fact, the problem of exis- tence overshadows that of finding the value; for example, while it might be important to know that every polynomial of odd degree has a zero (this is a statement of existence), it is not always necessary to know what this zero is (indeed, if it is irrational, we may never know what its true value is). Despite the fact that this book has much in common with other texts on analysis, its approach to the subject differs widely from any other text known to the author. In other texts, each limiting process is discussed, in detail and at length before the next process. There are several disadvan- tages in this approach. First, there is the need for a different definition for each concept, even though the student will ultimately realise that these different definitions have much in common.

  • af Reinhard Laubenbacher
    577,95 kr.

    This book contains the stories of five mathematical journeys into new realms, told through the writings of the explorers themselves. Some were guided by mere curiosity and the thrill of adventure, while others had more practical motives. In each case the outcome was a vast expansion of the known mathematical world and the realization that still greater vistas remained to be explored. The authors tell these stories by guiding the reader through the very words of the mathematicians at the heart of these events, and thereby provide insight into the art of approaching mathematical problems. The book can be used in a variety of ways. The five chapters are completely independent, each with varying levels of mathematical sophistication. The book will be enticing to students, to instructors, and to the intellectually curious reader. By working through some of the original sources and supplemental exercises, which discuss and solve - or attempt to solve - a great problem, this book helps the reader discover the roots of modern problems, ideas, and concepts, even whole subjects. Students will also see the obstacles that earlier thinkers had to clear in order to make their respective contributions to five central themes in the evolution of mathematics.

  • af Charles W. Curtis
    583,95 - 738,95 kr.

    Linear algebra is the branch of mathematics that has grown from a care- ful study of the problem of solving systems of linear equations. The ideas that developed in this way have become part of the language of much of higher mathematics. They also provide a framework for appli- cations of linear algebra to many problems in mathematics, the natural sciences, economics, and computer science. This book is the revised fourth edition of a textbook designed for upper division courses in linear algebra. While it does not presuppose an earlier course, many connections between linear algebra and under- graduate analysis are worked into the discussion, making it best suited for students who have completed the calculus sequence. For many students, this may be the first course in which proofs of the main results are presented on an equal footing with methods for solving numerical problems. The concepts needed to understand the proofs are shown to emerge naturally from attempts to solve concrete problems. This connection is illustrated by worked examples in almost every section. Many numerical exercises are included, which use all the ideas, and develop important techniques for problem-solving. There are also theoretical exercises, which provide opportunities for students to discover interesting things for themselves, and to write mathematical explanations in a convincing way. Answers and hints for many of the problems are given in the back. Not all answers are given, however, to encourage students to learn how to check their work.

  • af Murray H. Protter
    852,95 kr.

  • af Jack Macki
    567,95 - 820,95 kr.

    This monograph is an introduction to optimal control theory for systems governed by vector ordinary differential equations. It is not intended as a state-of-the-art handbook for researchers. We have tried to keep two types of reader in mind: (1) mathematicians, graduate students, and advanced undergraduates in mathematics who want a concise introduction to a field which contains nontrivial interesting applications of mathematics (for example, weak convergence, convexity, and the theory of ordinary differential equations); (2) economists, applied scientists, and engineers who want to understand some of the mathematical foundations. of optimal control theory. In general, we have emphasized motivation and explanation, avoiding the "e;definition-axiom-theorem-proof"e; approach. We make use of a large number of examples, especially one simple canonical example which we carry through the entire book. In proving theorems, we often just prove the simplest case, then state the more general results which can be proved. Many of the more difficult topics are discussed in the "e;Notes"e; sections at the end of chapters and several major proofs are in the Appendices. We feel that a solid understanding of basic facts is best attained by at first avoiding excessive generality. We have not tried to give an exhaustive list of references, preferring to refer the reader to existing books or papers with extensive bibliographies. References are given by author's name and the year of publication, e.g., Waltman [1974].

  • af George E. Martin
    671,95 - 923,95 kr.

    Transformation geometry is a relatively recent expression of the successful venture of bringing together geometry and algebra. The name describes an approach as much as the content. Our subject is Euclidean geometry. Essential to the study of the plane or any mathematical system is an under- standing of the transformations on that system that preserve designated features of the system. Our study of the automorphisms of the plane and of space is based on only the most elementary high-school geometry. In particular, group theory is not a prerequisite here. On the contrary, this modern approach to Euclidean geometry gives the concrete examples that are necessary to appreciate an introduction to group theory. Therefore, a course based on this text is an excellent prerequisite to the standard course in abstract algebra taken by every undergraduate mathematics major. An advantage of having nb college mathematics prerequisite to our study is that the text is then useful for graduate mathematics courses designed for secondary teachers. Many of the students in these classes either have never taken linear algebra or else have taken it too long ago to recall even the basic ideas. It turns out that very little is lost here by not assuming linear algebra. A preliminary version of the text was written for and used in two courses-one was a graduate course for teachers and the other a sophomore course designed for the prospective teacher and the general mathematics major taking one course in geometry.

  • af J. A. Thorpe
    672,95 kr.

    In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under- standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.

  • af E. Fischer
    1.057,95 kr.

    There are a great deal of books on introductory analysis in print today, many written by mathematicians of the first rank. The publication of another such book therefore warrants a defense. I have taught analysis for many years and have used a variety of texts during this time. These books were of excellent quality mathematically but did not satisfy the needs of the students I was teaching. They were written for mathematicians but not for those who were first aspiring to attain that status. The desire to fill this gap gave rise to the writing of this book. This book is intended to serve as a text for an introductory course in analysis. Its readers will most likely be mathematics, science, or engineering majors undertaking the last quarter of their undergraduate education. The aim of a first course in analysis is to provide the student with a sound foundation for analysis, to familiarize him with the kind of careful thinking used in advanced mathematics, and to provide him with tools for further work in it. The typical student we are dealing with has completed a three-semester calculus course and possibly an introductory course in differential equations. He may even have been exposed to a semester or two of modern algebra. All this time his training has most likely been intuitive with heuristics taking the place of proof. This may have been appropriate for that stage of his development.

  • af Jerome Malitz
    472,95 kr.

    This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere- quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel- oped step by step with hints in the problems. Such theorems are not used later in the sequence.

  • af Gabriel Klambauer
    597,95 kr.

    This book is intended for students familiar with a beginner's version of differential and integral calculus stressing only manipulation offormulas and who are now looking for a closer study of basic concepts combined with a more creative use of information. The work is primarily aimed at students in mathematics, engineering, and science who find themselves in transition from elementary calculus to rigorous courses in analysis. In addition, this book may also be of interest to those preparing to teach a course in calculus. Instead of exposing the reader to an excess of premature abstractions that so easily can degenerate into pedantry, I felt it more useful to stress instruc- tive and stimulating examples. The book contains numerous worked out examples and many of the exercises are provided with helpful hints or a solution in outline. For further exercises the interested reader may want to consult a problem book by the author entitled Problems and Propositions in Analysis (New York: Marcel Dekker, 1979). For the history of calculus I recommend the book by C. B. Boyer, The Concepts of the Calculus (New York: Dover, 1949).

  • af G. Whyburn & E. Duda
    566,95 kr.

    It is a privilege for me to write a foreword for this unusual book. The book is not primarily a reference work although many of the ideas and proofs are explained more clearly here than in any other source that I know. Nor is this a text of the customary sort. It is rather a record of a particular course and Gordon Whyburn's special method of teaching it. Perhaps the easiest way to describe the course and the method is to relate my own personal experience with a forerunner of this same course in the academic year 1937-1938. At that time, the course was offered every other year with a following course in algebraic topology on alternate years. There were five of us enrolled, and on the average we knew less mathematics than is now routinely given in a junior course in analysis. Whyburn's purpose, as we learned, was to prepare us in minimal time for research in the areas in which he was inter- ested. His method was remarkable.

  • af P. R. Halmos
    999,95 kr.

    Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

  • af Serge Lang
    675,95 kr.

    "e;Linear Algebra"e; is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorem for linear maps, including eigenvectors and eigenvalues, quadratic and hermitian forms, diagnolization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants and linear maps. However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.

  • af Rudolf Lidl & Günter Pilz
    602,95 - 723,95 kr.

    Accessible to junior and senior undergraduate students, this survey contains many examples, solved exercises, sets of problems, and parts of abstract algebra of use in many other areas of discrete mathematics. Although this is a mathematics book, the authors have made great efforts to address the needs of users employing the techniques discussed. Fully worked out computational examples are backed by more than 500 exercises throughout the 40 sections. This new edition includes a new chapter on cryptology, and an enlarged chapter on applications of groups, while an extensive chapter has been added to survey other applications not included in the first edition. The book assumes knowledge of the material covered in a course on linear algebra and, preferably, a first course in (abstract) algebra covering the basics of groups, rings, and fields.

  • af K. Janich
    618,95 kr.

    Contents: Introduction. - Fundamental Concepts. -Topological Vector Spaces.- The Quotient Topology. -Completion of Metric Spaces. - Homotopy. - The TwoCountability Axioms. - CW-Complexes. - Construction ofContinuous Functions on Topological Spaces. - CoveringSpaces. - The Theorem of Tychonoff. - Set Theory (by T.Br|cker). - References. - Table of Symbols. -Index.