De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bøger i Undergraduate Texts in Mathema serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Saber Elaydi
    848,95 kr.

  • af Antoine Chambert-Loir
    544,95 kr.

  • af M H Protter
    638,95 kr.

  • af John Harris
    559,95 kr.

  • af Thomas S Shores
    572,95 kr.

    This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms.Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises. The student will develop a solid foundation in the following topics*Gaussian elimination and other operations with matrices*basic properties of matrix and determinant algebra*standard Euclidean spaces, both real and complex*geometrical aspects of vectors, such as norm, dot product, and angle*eigenvalues, eigenvectors, and discrete dynamical systems*general norm and inner-product concepts for abstract vector spacesFor many students, the tools of matrix and linear algebra will be as fundamental in their professional work as the tools of calculus; thus it is important to ensure that students appreciate the utility and beauty of these subjects as well as the mechanics. By including applied mathematics and mathematical modeling, this new textbook will teach students how concepts of matrix and linear algebra make concrete problems workable.Thomas S. Shores is Professor of Mathematics at the University of Nebraska, Lincoln, where he has received awards for his teaching. His research touches on group theory, commutative algebra, mathematical modeling, numerical analysis, and inverse theory.

  • af Paul Cull
    560,95 kr.

    Difference equations are models of the world around us. From clocks to computers to chromosomes, processing discrete objects in discrete steps is a common theme. Difference equations arise naturally from such discrete descriptions and allow us to pose and answer such questions as: How much? How many? How long? Difference equations are a necessary part of the mathematical repertoire of all modern scientists and engineers.In this new text, designed for sophomores studying mathematics and computer science, the authors cover the basics of difference equations and some of their applications in computing and in population biology. Each chapter leads to techniques that can be applied by hand to small examples or programmed for larger problems. Along the way, the reader will use linear algebra and graph theory, develop formal power series, solve combinatorial problems, visit Perron-Frobenius theory, discuss pseudorandom number generation and integer factorization, and apply the Fast Fourier Transform to multiply polynomials quickly. The book contains many worked examples and over 250 exercises. While these exercises are accessible to students and have been class-tested, they also suggest further problems and possible research topics. Paul Cull is a professor of Computer Science at Oregon State University. Mary Flahive is a professor of Mathematics at Oregon State University. Robby Robson is president of Eduworks, an e-learning consulting firm. None has a rabbit.

  • af Ronald S Irving
    927,95 kr.

    Mathematics is often regarded as the study of calculation, but in fact, mathematics is much more. It combines creativity and logic in order to arrive at abstract truths. This book is intended to illustrate how calculation, creativity, and logic can be combined to solve a range of problems in algebra. Originally conceived as a text for a course for future secondary-school mathematics teachers, this book has developed into one that could serve well in an undergraduate course in abstract algebra or a course designed as an introduction to higher mathematics. Not all topics in a traditional algebra course are covered. Rather, the author focuses on integers, polynomials, their ring structure, and fields, with the aim that students master a small number of serious mathematical ideas. The topics studied should be of interest to all mathematics students and are especially appropriate for future teachers. One nonstandard feature of the book is the small number of theorems for which full proofs are given. Many proofs are left as exercises, and for almost every such exercise a detailed hint or outline of the proof is provided. These exercises form the heart of the text. Unwinding the meaning of the hint or outline can be a significant challenge, and the unwinding process serves as the catalyst for learning.Ron Irving is the Divisional Dean of Natural Sciences at the University of Washington. Prior to assuming this position, he served as Chair of the Department of Mathematics. He has published research articles in several areas of algebra, including ring theory and the representation theory of Lie groups and Lie algebras. In 2001, he received the University of Washington's Distinguished Teaching Award for the course on which this book is based.

  • af I M James
    553,95 kr.

    This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec­ tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the number of definitions down to the essential minimum. There are no particular pre­ requisites but I have worked on the assumption that a potential reader will already have had some experience of working with sets and functions and will also be familiar with the basic concepts of algebra and analysis. There are a number of fine books on general topology, some of which I have listed in the Select Bibliography at the end of this volume. Of course I have benefited greatly from this previous work in writing my own account. Undoubtedly the strongest influence is that of Bourbaki's Topologie Generale [2], the definitive treatment of the subject which first appeared over a genera­ tion ago.