De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bøger i Synthesis Lectures on Solid State Materials and Devices serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • af Young-Hee Kim
    317,95 kr.

    In this work, the reliability of HfO2 (hafnium oxide) with poly gate and dual metal gate electrode (Ru-Ta alloy, Ru) was investigated. Hard breakdown and soft breakdown, particularly the Weibull slopes, were studied under constant voltage stress. Dynamic stressing has also been used. It was found that the combination of trapping and detrapping contributed to the enhancement of the projected lifetime. The results from the polarity dependence studies showed that the substrate injection exhibited a shorter projected lifetime and worse soft breakdown behavior, compared to the gate injection. The origin of soft breakdown (first breakdown) was studied and the results suggested that the soft breakdown may be due to one layer breakdown in the bilayer structure (HfO2/SiO2: 4 nm/4 nm). Low Weibull slope was in part attributed to the lower barrier height of HfO2 at the interface layer. Interface layer optimization was conducted in terms of mobility, swing, and short channel effect using deep submicron MOSFET devices.

  • af Ray T. Chen
    394,95 kr.

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical interconnects, many stumbling blocks need to be addressed such as thin-film transmitter and detector, thermal management, process compatibility, reliability, cost effective fabrication process, and easy integration. The material presented eventually will relieve such concerns and make the integration of optical interconnection highly feasible. The hybrid integration of the optical interconnection layer and electrical layers is ongoing.