De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bøger i Aspects of Mathematics serien

Filter
Filter
Sorter efterSorter Serie rækkefølge
  • - Sheaves, Cohomology of Sheaves, and Applications to Riemann Surfaces
    af Gunter Harder
    1.419,95 kr.

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own.In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them. For this second edition the text was completely revised and corrected. The author also added a short section on moduli of elliptic curves with N-level structures. This new paragraph anticipates some of the techniques of volume II.

  • af Thomas Berger, Rainer Jung & F. Hirzebruch
    1.029,95 kr.

    This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.

  • af Yves Andre
    726,95 kr.

    "A publication of the Max-Planck-Institut f'ur Mathematik, Bonn."

  • - Basic Concepts, Coherent Cohomology, Curves and Their Jacobians
    af Gunter Harder
    1.396,95 - 1.717,95 kr.

  • - Where Arithmetic Meets Geometry and Physics
     
    832,95 kr.

    In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. Research across these ?elds has now reached an imp- tant turning point, as shows the increasing interest with which the mathematical community approaches these topics. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new c- nections between the ?elds of number theory, algebraic geometry and noncom- tative geometry. Thecontributionstothisvolumepartlyre?ectthetwoworkshops¿Noncom- tative Geometry and Number Theory¿ that took place at the Max¿Planck¿Institut f¿ ur Mathematik in Bonn, in August 2003 and June 2004. The two workshops were the ?rst activity entirely dedicated to the interplay between these two ?elds of mathematics. An important part of the activities, which is also re?ected in this volume, came from the hindsight of physics which often provides new perspectives onnumber theoretic problems that make it possible to employ the tools of nonc- mutative geometry, well designed to describe the quantum world.

  • - Perspectives on Algebro-Geometric Moduli
    af Hossein Abbaspour, Matilde Marcolli & Thomas Tradler
    777,95 - 999,95 kr.

  • - Integral Formulae and Neumann Problem
    af Ingo Lieb & Joachim Michel
    999,95 kr.

    This book presents complex analysis of several variables from the point of view of the Cauchy-Riemann equations and integral representations. A more detailed description of our methods and main results can be found in the introduction. Here we only make some remarks on our aims and on the required background knowledge. Integral representation methods serve a twofold purpose: 1° they yield regularity results not easily obtained by other methods and 2°, along the way, they lead to a fairly simple development of parts of the classical theory of several complex variables. We try to reach both aims. Thus, the first three to four chapters, if complemented by an elementary chapter on holomorphic functions, can be used by a lecturer as an introductory course to com­ plex analysis. They contain standard applications of the Bochner-Martinelli-Koppelman integral representation, a complete presentation of Cauchy-Fantappie forms giving also the numerical constants of the theory, and a direct study of the Cauchy-Riemann com­ plex on strictly pseudoconvex domains leading, among other things, to a rather elementary solution of Levi's problem in complex number space en. Chapter IV carries the theory from domains in en to strictly pseudoconvex subdomains of arbitrary - not necessarily Stein - manifolds. We develop this theory taking as a model classical Hodge theory on compact Riemannian manifolds; the relation between a parametrix for the real Laplacian and the generalised Bochner-Martinelli-Koppelman formula is crucial for the success of the method.

  • - A Publication of the Max-Planck-Institut fur Mathematik, Bonn
    af Anthony Tromba
    1.107,95 kr.

    This book consists almost entirely of papers delivered at the Seminar on partial differential equations held at Max-Planck-Institut in the spring of 1984. They give an insight into important recent research activities. Some further developments are also included.

  • - Proceedings
     
    1.333,95 kr.

    This volume contains the Proceedings of the International Workshop "Complex Analysis", which was held from February 12-16, 1990, in Wuppertal (Germany) in honour of H. Grauert, one of the most creative mathematicians in Complex Analysis of this century. In complete accordance with the width of the work of Grauert the book contains research notes and longer articles of many important mathematicians from all areas of Complex Analysis (Altogether there a re 49 articles in the volume). Some of the main subjects are: Cau chy-Riemann Equations with estimates, q-convexity, CR structures, deformation theory, envelopes of holomorphy, function algebras, complex group actions, Hodge theory, instantons, Kähler geometry, Lefschetz theorems, holomorphic mappings, Nevanlinna theory, com plex singularities, twistor theory, uniformization.

  • af Peter Stiller
    833,95 kr.

    In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.

  • - Quantum Cohomology and Singularities
     
    1.222,95 kr.

    Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90's.An activity was organized at the Max-Planck-Institute for Mathematics in Bonn, with the purpose of bringing together the main experts in these areas. This volume originates from this activity and presents the state of the art in the subject.

  • af Dmitri Akhiezer
    444,95 kr.

    This book was planned as an introduction to a vast area, where many contri­ butions have been made in recent years. The choice of material is based on my understanding of the role of Lie groups in complex analysis. On the one hand, they appear as the automorphism groups of certain complex spaces, e. g. , bounded domains in en or compact spaces, and are therefore important as being one of their invariants. On the other hand, complex Lie groups and, more generally, homoge­ neous complex manifolds, serve as a proving ground, where it is often possible to accomplish a task and get an explicit answer. One good example of this kind is the theory of homogeneous vector bundles over flag manifolds. Another example is the way the global analytic properties of homogeneous manifolds are translated into algebraic language. It is my pleasant duty to thank A. L. Onishchik, who first introduced me to the theory of Lie groups more than 25 years ago. I am greatly indebted to him and to E. B. Vinberg forthe help and advice they have given me for years. I would like to express my gratitude to M. Brion, B. GilIigan, P. Heinzner, A. Hu­ kleberry, and E. Oeljeklaus for valuable discussions of various subjects treated here. A part of this book was written during my stay at the Ruhr-Universitat Bochum in 1993. I thank the Deutsche Forschungsgemeinschaft for its research support and the colleagues in Bochum for their hospitality.

  • af Raymond Gerard & Hidetoshi Tahara
    1.110,95 kr.

    The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations. We study the existence of formal power series solutions, holomorphic solutions, and singular solutions of singular non linear partial differential equations. In the first chapter, we introduce operators with regular singularities in the one variable case and we give a new simple proof of the classical Maillet's theorem for algebraic differential equations. In chapter 2, we extend this theory to operators in several variables. The chapter 3 is devoted to the study of formal and convergent power series solutions of a class of singular partial differential equations having a linear part, using the method of iteration and also Newton's method. As an appli­ cation of the former results, we look in chapter 4 at the local theory of differential equations of the form xy' = 1(x,y) and, in particular, we show how easy it is to find the classical results on such an equation when 1(0,0) = 0 and give also the study of such an equation when 1(0,0) #- 0 which was never given before and can be extended to equations of the form Ty = F(x, y) where T is an arbitrary vector field.