A Holistic, Decision-Theoretic Framework for Pool-Based Active Learning
Du sparer
0%
ift. normalprisen
Spar
0%
- Indbinding:
- Paperback
- Sideantal:
- 256
- Udgivet:
- 1. januar 2014
- Størrelse:
- 148x15x210 mm.
- Vægt:
- 336 g.
- 2-3 uger.
- 28. november 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af A Holistic, Decision-Theoretic Framework for Pool-Based Active Learning
Efficient labeling is an important topic in machine learning research as classifiers need labeled data. Whereas unlabeled data is easily gathered, labeling is exhausting, time-consuming, or expensive and should, therefore, be reduced to a minimum. Active learning aims to actively select useful, unlabeled instances for label acquisition to reduce the labeling effort while providing labeled training data such that the classifier performs well. This thesis proposes Probabilistic Active Learning, a holistic, decision-theoretic framework for active learning that enables optimization for every performance measure and classifier. Using the holistic mathematical description, we can define an upper baseline for active learning and identify theoretical similarities to other selection strategies. We evaluate our approach on 22 datasets for six different performance measures. Moreover, we show that our approach can be applied to multiple classifiers and can be used for batch selection. In another scenario, called transductive active learning, we provide a set of unlabeled instances and ask the active learning algorithm to return the correct labels only for this set. In contrast to the standard (inductive) scenario, where we aim to build a general classifier, we can either ask an oracle to provide the correct labels or use the classifier to predict the label. We introduce a new cost-based performance measure for transductive active learning and show the superiority of our probabilistic approach.
Brugerbedømmelser af A Holistic, Decision-Theoretic Framework for Pool-Based Active Learning
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen A Holistic, Decision-Theoretic Framework for Pool-Based Active Learning findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621