Nano Engineering for Thermoelectrics and Spintronics
- Indbinding:
- Paperback
- Sideantal:
- 320
- Udgivet:
- 23. oktober 2023
- Størrelse:
- 152x17x229 mm.
- Vægt:
- 466 g.
- 2-3 uger.
- 17. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Nano Engineering for Thermoelectrics and Spintronics
Nanoengineering for Thermoelectrics and Spintronics involves the development and fabrication of functional semiconducting materials at the nanoscale level. These materials exhibit unique physical, chemical, and electronic properties that make them suitable for use in a range of applications, including thermoelectrics and spintronics.
Thermoelectric materials are capable of converting heat into electrical energy, and vice versa. They are used in a variety of applications, including power generation, refrigeration, and waste heat recovery. However, traditional thermoelectric materials suffer from low efficiency, which limits their practical applications. Nanoengineering offers a solution to this problem by enabling the fabrication of thermoelectric materials with enhanced performance.
Spintronics, on the other hand, involves the study and manipulation of the spin properties of electrons, which can be used to store and process information. Spintronic devices are becoming increasingly important in modern electronics, as they offer several advantages over traditional electronic devices, including lower power consumption, higher speed, and greater functionality.
The development of functional semiconducting materials for both thermoelectrics and spintronics requires a thorough understanding of the underlying physics and chemistry at the nanoscale level. Researchers use a range of techniques to fabricate and characterize these materials, including molecular beam epitaxy, chemical vapor deposition, and atomic layer deposition.
One of the key advantages of nanoengineering for thermoelectrics and spintronics is the ability to control the structure and composition of the materials at the atomic level. This allows researchers to tailor the electronic and thermal properties of the materials to meet specific application requirements. For example, researchers can manipulate the band gap of the materials to optimize their thermoelectric performance, or introduce magnetic dopants to enhance their spintronic properties.
Another important aspect of nanoengineering for thermoelectrics and spintronics is the use of low-dimensional materials, such as nanowires, nanotubes, and thin films. These materials exhibit unique electronic and thermal properties due to their high surface-to-volume ratio, which makes them ideal for use in thermoelectric and spintronic devices.
In recent years, there has been a growing interest in the use of hybrid materials for thermoelectric and spintronic applications. These materials combine the properties of different types of semiconducting materials to achieve enhanced performance. For example, researchers have developed hybrid materials that combine the high thermoelectric performance of bismuth telluride with the magnetic properties of iron oxide.
Overall, Nanoengineering for Thermoelectrics and Spintronics is a rapidly developing field that holds great promise for the development of next-generation electronic devices. By exploiting the unique properties of semiconducting materials at the nanoscale level, researchers can develop materials with enhanced performance and functionality for a range of applications.
Thermoelectric materials are capable of converting heat into electrical energy, and vice versa. They are used in a variety of applications, including power generation, refrigeration, and waste heat recovery. However, traditional thermoelectric materials suffer from low efficiency, which limits their practical applications. Nanoengineering offers a solution to this problem by enabling the fabrication of thermoelectric materials with enhanced performance.
Spintronics, on the other hand, involves the study and manipulation of the spin properties of electrons, which can be used to store and process information. Spintronic devices are becoming increasingly important in modern electronics, as they offer several advantages over traditional electronic devices, including lower power consumption, higher speed, and greater functionality.
The development of functional semiconducting materials for both thermoelectrics and spintronics requires a thorough understanding of the underlying physics and chemistry at the nanoscale level. Researchers use a range of techniques to fabricate and characterize these materials, including molecular beam epitaxy, chemical vapor deposition, and atomic layer deposition.
One of the key advantages of nanoengineering for thermoelectrics and spintronics is the ability to control the structure and composition of the materials at the atomic level. This allows researchers to tailor the electronic and thermal properties of the materials to meet specific application requirements. For example, researchers can manipulate the band gap of the materials to optimize their thermoelectric performance, or introduce magnetic dopants to enhance their spintronic properties.
Another important aspect of nanoengineering for thermoelectrics and spintronics is the use of low-dimensional materials, such as nanowires, nanotubes, and thin films. These materials exhibit unique electronic and thermal properties due to their high surface-to-volume ratio, which makes them ideal for use in thermoelectric and spintronic devices.
In recent years, there has been a growing interest in the use of hybrid materials for thermoelectric and spintronic applications. These materials combine the properties of different types of semiconducting materials to achieve enhanced performance. For example, researchers have developed hybrid materials that combine the high thermoelectric performance of bismuth telluride with the magnetic properties of iron oxide.
Overall, Nanoengineering for Thermoelectrics and Spintronics is a rapidly developing field that holds great promise for the development of next-generation electronic devices. By exploiting the unique properties of semiconducting materials at the nanoscale level, researchers can develop materials with enhanced performance and functionality for a range of applications.
Brugerbedømmelser af Nano Engineering for Thermoelectrics and Spintronics
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Nano Engineering for Thermoelectrics and Spintronics findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621