Machine Learning Support for Fault Diagnosis of System-on-Chip
- Indbinding:
- Hardback
- Sideantal:
- 328
- Udgivet:
- 14. marts 2023
- Udgave:
- 23001
- Størrelse:
- 160x24x241 mm.
- Vægt:
- 658 g.
- 8-11 hverdage.
- 6. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Machine Learning Support for Fault Diagnosis of System-on-Chip
This book provides a state-of-the-art guide to Machine Learning (ML)-based techniques that have been shown to be highly efficient for diagnosis of failures in electronic circuits and systems. The methods discussed can be used for volume diagnosis after manufacturing or for diagnosis of customer returns. Readers will be enabled to deal with huge amount of insightful test data that cannot be exploited otherwise in an efficient, timely manner. After some background on fault diagnosis and machine learning, the authors explain and apply optimized techniques from the ML domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing. These techniques can be used for failure isolation in logic or analog circuits, board-level fault diagnosis, or even wafer-level failure cluster identification. Evaluation metrics as well as industrial case studies are used to emphasize the usefulness and benefits of using ML-based diagnosis techniques.
Brugerbedømmelser af Machine Learning Support for Fault Diagnosis of System-on-Chip
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Machine Learning Support for Fault Diagnosis of System-on-Chip findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621